
A pseudo-LISA convention for the Mock LISA Data Archive

Michele Vallisneri
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Neil J. Cornish
Department of Physics, Montana State University, Bozeman, MT 59717

(Dated: February 15, 2005)

A first draft of pseudo-LISA conventions for the LISA orbits, for GW source objects, for the LISA
TDI responses, and for the standard TDI combinations. Mostly pasted together from Refs. [2] and
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PACS numbers:

I. INTRODUCTION

II. LISA ORBITS

We define the orbits of the pseudo-LISA spacecraft as defined in the Appendix of Ref. [2] (and as used in the LISA

Simulator). Namely, in the a Solar-system–baricentric ecliptic coordinate system (SSB frame) where we have set the
x axis toward the vernal point, the coordinates of each spacecraft are given by the expressions
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where β = 2(n− 1)π/3 + λ (n = 1, 2, 3) is the relative orbital phase of each spacecraft in the constellation, γ is the
ecliptic azimuthal angle, and r is the standard Keplerian radius

r =
a(1 − e2)

1 + e cosγ
. (2)

Here a is the semi-major axis of the guiding center and has an approximate value of one AU. To get the above
coordinates as a function of time we first note that the azimuthal angle is related to the eccentric anomaly, ψ, by
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and the eccentric anomaly is related to the orbital phase α(t) = 2πfmt+ κ through

α− β = ψ − e sinψ . (4)

For small eccentricities we can expand equations (3) and (4) in a power series in e to arrive at

γ = (α− β) + 2e sin(α− β) +
5

2
e2 sin(α− β) cos(α− β) + · · · (5)

Substituting this series into equation (1) and keeping terms only up to order e gives us

x = a cos(α) + a e
(
sinα cosα sinβ − (1 + sin2 α) cosβ

)
,

y = a sin(α) + a e
(
sinα cosα cosβ − (1 + cos2 α) sinβ

)
, (6)

z = −
√

3 a e cos(α− β) ,

with e = 0.00965, a = 1 AU. These are the desired coordinates of each spacecraft as a function of time. Notice that
by keeping only linear terms in the eccentricity we are neglecting the variation in the optical path length. The path
length will change due to the Keplerian orbits, but these effects enter at O(e2) and above.1

1 However: the LISA Simulator and Synthetic LISA actually use expressions accurate to order e
2 for the positions. Synthetic LISA uses

approximate armlengths accurate to order e. Update the above to reflect that?
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These spacecraft orbits are mapped (exactly!) to those used in Synthetic LISA [4, 6] by setting the Synthetic LISA
EccentricInclined parameters η0 = κ, ξ0 = 3π/2 − κ+ λ, sw < 0 (which has the effect of exchanging spacecraft 2
and 3).

III. GRAVITATIONAL-WAVE SOURCES

We follow Ref. [2] (and the LISA Simulator) in describing the sky location of gravitational-wave sources by the
unit vector n̂,

n̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ , (7)

(where θ and φ are the J2000 ecliptic colatitude and longitude, the latter measured from the vernal point, aligned with
the x̂ axis in our convention). The corresponding gravitational radiation is modeled as a plane wave in a transverse-

traceless gauge, propagating in the Ω̂ = −n̂ direction in the SSB frame. The surfaces of constant phase are then given
by ξ = t+ n̂ · x = const. A generic gravitational wave can be decomposed into two standard polarization states,

h(ξ, n̂) = h+(ξ)e+(û, v̂) + h×(ξ)e×(û, v̂) , (8)

where e+ and e× are the polarization tensors

e+ = û⊗ û− v̂ ⊗ v̂,

e× = û⊗ v̂ + v̂ ⊗ û, (9)

and where

û = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ, (10)

v̂ = sinφ x̂− cosφ ŷ .

If we refer gravitational-wave emission to the principal polarization axes p̂ and q̂ of the source,

h(ξ, n̂) = hS
+(ξ) ǫ

+(p̂, q̂) + hS
×

(ξ) ǫ
×(p̂, q̂), (11)

with

ǫ
+ = p̂⊗ p̂− q̂ ⊗ q̂,

ǫ
× = p̂⊗ q̂ + q̂ ⊗ p̂ . (12)

we can go back to the general decomposition (8) by setting

h+(ξ) = cos(2ψ)hS
+(ξ) + sin(2ψ)hS

×
(ξ), (13)

h×(ξ) = cos(2ψ)hS
×

(ξ) − sin(2ψ)hS
+(ξ), (14)

where ψ = −arctan(v̂ · p/û · p) is the source polarization angle.
These conventions are mapped (exactly!) to those used in Synthetic LISA [4, 6] by setting the Synthetic LISA Wave

parameters β = π/2 − θ (β is the J2000 ecliptic latitude), λ = φ, and ψSL = −ψLS.

IV. LISA RESPONSES

The basic LISA response to gravitational waves is taken to be the phase response Φij used in the LISA Simulator and
discussed in Sec. II of Ref. [2] [see especially Eqs. (4)–(13) and (22)] or equivalently the fractional frequency response
ygw

slr used in Synthetic LISA and discussed in Sec. II B of Ref. [6] (i and s identify the transmitting spacecraft, j and
r the receiving spacecraft for each phase measurement, l is a redundant link index).

The phase and fractional frequency formalisms are equivalent, and related by a simple time integration. It is not
clear at this time which will be the primary format for LISA data, and perhaps both should be adopted concurrently.
The frequency measurements have the advantage of being directly proportional to the gravitational strain; the phase
measurements have the advantage of representing more closely the actual output of the LISA phasemeters.
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V. TDI OBSERVABLES

We define the standard TDI observables following the Synthetic LISA [4, 6] naming scheme and sign conventions
(see also the Synthetic LISA file lisasim-tdi.cpp). All of these can be used both as frequency and phase observables
by replacing yslr measurements with Φij measurements. See the TDI Rosetta Stone [5] for translations between index
notations (in particular, the primed indices of Ref. [8] correspond to positive indices in the Synthetic LISA usage).

• First-generation TDI (TDI 1.0): the Sagnac observables α, β, γ (“centered”, respectively, on spacecraft 1, 2,
3, as all following sets of three), and the symmetrized Sagnac observable ζ, as defined in Ref. [7]. No need to
define the eight-pulse observables (Michelson, etc.), which are the same as in modified TDI.

• Modified TDI (TDI 1.5): the unequal-arm Michelson observables X , Y , Z; the relay observables U , V , W ; the
monitor observables E, F , G; the beacon observables P , Q, R; the Sagnac observables α1, α2, α3; and the
symmetrized Sagnac observables ζ1, ζ2, ζ3 as defined in Ref. [8].

• Second-generation TDI (TDI 2.0): the unequal-arm Michelson observables X1, X2, X3; the relay observables
U1, U2, U3; the monitor observables E1, E2, E3; the beacon observables P1, P2, P3 as defined in Ref. [8].

• Optimal TDI observables: in first-generation TDI, A, E, and T as defined in terms of α, β, γ in Ref. [9]; in
second-generation TDI, Ā, Ē, T̄ as defined in terms of α1, α2, α3 in Ref. [10].

Probably the modified and second-generation TDI Michelson observables will be those used most often for the MLDA.
Note also that there is a naming conflict here between the first-generation spacecraft-1-centered monitor observable
and the first-generation spacecraft-2-centered optimal observable.
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